
Doing Evil Things with Common 
Lisp



Overview

➲ I use SBCL on a 32bit Intel Mac (OS X)
➲ Loading code that is normally a Linux driver 

into a Lisp image
➲ Creating CFFI bindings to foreign code
➲ Writing Lisp code to load binary files using 

the binary-types library
➲ Parsing Mach-O (OS X) executable files
➲ Using debug information to generate foreign 

bindings automatically



My Background

➲ 7 years of C/C++ experience doing embed-
ded systems work

➲ 1 year of C/C++ in the games industry ob-
sessing over performance and memory us-
age

➲ 2.5 years of Common Lisp with nothing of 
note to show for it & I still feel like a novice.  
But I'm having fun.  Learn a language in 10 
years and all that.



Project Background

➲ YAFFS is an Open Source filesystem driver, 
designed for NAND flash

➲ Runs under Linux & as a standalone ap-
plication

➲ I know the author and he keeps bugging me 
to contribute again

➲ But I want to keep using Lisp, not C
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Typical Usage Stacks What I want



Yaffs in Lisp

➲ Pretty easy to compile as a dynamic library 
& load within SBCL

● Other Linux drivers might need a thin wrapper to 
provide link-time symbols

● On OS X “gcc -bundle ...”
➲ Ideally I want to grow my Lisp image into a 

toolbench for working with Yaffs
● Inspect internal Yaffs state
● Call random functions
● Add new functions/callbacks
● Do all the things I enjoy doing in a pure Lisp en-

vironment



Bindings

➲ Loading a DLL is the really easy bit
➲ Writing bindings to call that code is harder
➲ Doing it by hand is somewhere between  

tedious and hard
● Yaffs has a bookkeeping struct that has about 

220 members
➲ Doing it automatically doesn't always work 

out well
● SWIG is something of a solution

● Often needs to generate C/C++ code that needs to go 
into the original library

● No maintained Lisp generators that I'm aware of



CFFI is Really Nice

➲ typedef struct foo {
int a;
float b;

};
➲ int bar(float a){...}

➲ (defcstruct foo
(a :int)
(b :float))

➲

(defcfun bar :int
(a :float))



Debuggers Are Your Friends

➲ C/C++ debuggers need to know a lot about 
the program they are debugging

● Function signatures
● Object layout and member names
● How type defines and pointers map to other types
● Sometimes even pre-processor macros

➲ They get this info by parsing special com-
piler generated debugging data

➲ The debug info is fairly easy to parse



The Idea
➲ Write a Lisp program to parse the debug 

data directly from a C/C++ binary that has 
been compiled with debugging turned on

➲ Automatically generate CFFI information 
that will be correct for that binary

● No messing with pre-processor
➲ Usage

1 Obtain binary with debugging info
2 Generate bindings
3 Woohoo

➲ Limitations
● No way to get fully inlined functions
● C++ name mangling still a per-compiler 

issue



A C/C++ Debugger written in CL??

➲ Totally pie in the sky right now
➲ But, how cool would that be?
➲ Not that much of a stretch, only need to be 

able to write to memory where the library is 
located to insert break points & then trap 
signals on the Lisp side

➲ Could use dirty tricks to replace the C func-
tions with calls to Lisp functions

➲ Apart from some details, it's probably not 
that hard – certainly nothing “new”



Parsing Binary Files
➲ In C, you just create a struct of the correct 

layout, and use fread
➲ Common Lisp has no built in support for this 

idiom
➲ BINARY-TYPES is a Cliki library that lets 

you use the C idiom
➲ (define-binary-class mach-header ()

((magic         :binary-type 'u32)  ; should be #xfeedface
 (cpu-type      :binary-type 'u32)
 (cpu-subtype   :binary-type 'u32)
 (file-type     :binary-type 'mach-filetype-constants)
 (ncmds         :binary-type 'u32)
 (sizeof-cmds   :binary-type 'u32)
 (flags         :binary-type 'u32))) 

➲ (with-open-file (stream “foo”)
(read-binary 'mach-header stream)) 

=> CLOS Object of type MACH-HEADER



Mach O files

➲ Consists of
● Header (previous slide)
● Some number of load commands

● (define-binary-class load-command ()
((cmd      :binary-type 'load-command-constants)
 (cmd-size :binary-type 'u32)))

● Some number of sections containing real data
➲ Symbol table command looks like

● (define-binary-class symtab-command () ; LC_SYMTAB
((command-header :binary-type 'load-command)
 (symoff         :binary-type 'u32)
 (nsyms          :binary-type 'u32)
 (stroff         :binary-type 'u32)
 (strsize        :binary-type 'u32)
 (symbols        :accessor symbols-of :initform nil)))

➲ Pretty much the same as ELF files 



Stabs Debugging Format
➲ Simple string format 

“name:symbol-descriptor type-information”
➲ char:t(0,9)=r(0,9);0;127;

typeid 't(0,9)', named char, with range 0..127
➲ :t(0,7)=*(0,9)

typeid 't(0,7)' is a pointer to '(0,9)'
➲ myStruct:T(0,17)=s96a:(0,2),0,32;b:(0,2),32,32;c:(0,

18),64,704;;
's96' -> structure of size 96 bits
'a:(0,2),0,32' -> name is 'a', type is '(0,2)', 0 bits off-
set from struct start, size 32 bits

➲ Way easier than parsing C/C++ 



C Code/CFFI Output
➲ typedef int foo;

typedef char* string;
struct myStruct
{
    int a;
    int b;
    int c[22];
};

typedef struct
{
    int c;
} my2Struct;

typedef enum
{
    Efoo,
    Ebar
} foobar;

enum {
    foo2
} foobar2;

typedef union
{
    int i;
    char c;
} myunion;

➲ (DEFCTYPE FOO INT)
(DEFCTYPE STRING CHAR*)
(DEFCSTRUCT MYSTRUCT 

(A INT OFFSET 0 COUNT 1) 
(B INT OFFSET 4 COUNT 1)

       (C INT OFFSET 8 COUNT 22))

(DEFCTYPE INT :int32)
(DEFCTYPE CHAR** :pointer)

(DEFCSTRUCT MY2STRUCT 
(C INT OFFSET 0 COUNT 1))

(DEFCENUM FOOBAR 
(EFOO 0)
(EBAR 1))

(DEFCENUM ENUM-2003 
(FOO2 0))

(DEFCTYPE CHAR* :string)
(DEFCTYPE CHAR :char)
(DEFCTYPE FLOAT :float)
(DEFCTYPE DOUBLE :float)
(DEFCTYPE UNSIGNED-CHAR :uint8)

(DEFCUNION MYUNION 
(I INT COUNT 1) 
(C CHAR COUNT 1))



C Code/CFFI Output

➲ int func2(my2Struct 
*sss) {};

➲ int main (int argc, 
char** argv){}

➲ int intfunc(int arg1){}

➲ (DEFCFUN func2 INT 
(SSS MY2STRUCT*))

➲ (DEFCFUN main INT 
(ARGC INT) 
(ARGV CHAR**))

➲ (DEFCFUN intfunc INT
(ARG1 INT))



Oh, that evil thing?
➲ Something I was playing with when Bill con-

tacted me
1 Create a CFFI C function to a name that doesn't 

exist, (defcfun foo :int (a :int))
2 Create a callback function that matches that sig-

nature, (defcallback foo-lisp :int ((a :int)))
3 Hack SBCL's foreign function linkage table to 

point foo at foo-lisp
4 Call (FOO 4)

➲ Execution will do a convoluted jump from 
Lisp code, to a C calling convention, to Lisp 
code and back.

➲ Probably not useful :)



END

●Discussion (hopefully)



Doing Evil Things with Common 
Lisp

● Click to add text

A somewhat misleading title really, I 
promise that I'll explain it at the end.
This presentation isn't really about a 
single piece of software or anything.  
Bill managed to convince me to present 
something and I was doing some inter-
esting stuff.  So this talk is about that 
interesting stuff.



Overview

➲ I use SBCL on a 32bit Intel Mac (OS X)
➲ Loading code that is normally a Linux driver 

into a Lisp image
➲ Creating CFFI bindings to foreign code
➲ Writing Lisp code to load binary files using 

the binary-types library
➲ Parsing Mach-O (OS X) executable files
➲ Using debug information to generate foreign 

bindings automatically

My SBCL is a few months old now.
The last point is IMHO the most inter-
esting.



My Background

➲ 7 years of C/C++ experience doing embed-
ded systems work

➲ 1 year of C/C++ in the games industry ob-
sessing over performance and memory us-
age

➲ 2.5 years of Common Lisp with nothing of 
note to show for it & I still feel like a novice.  
But I'm having fun.  Learn a language in 10 
years and all that.

The embedded systems work was 
mostly WinCE and Linux.  I wrote 
device drivers, tools, etc.



Project Background

➲ YAFFS is an Open Source filesystem driver, 
designed for NAND flash

➲ Runs under Linux & as a standalone ap-
plication

➲ I know the author and he keeps bugging me 
to contribute again

➲ But I want to keep using Lisp, not C

NAND flash is the most common non-
volatile solid state storage.  It's in 
iPods, camera cards, usb drives, etc.  
Apple buys more than 50% of all of it.
NAND is different enough from other 
systems that a custom file system is 
pretty much required.
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Typical Usage Stacks What I want

Yaffs actually make it pretty easy to 
build as a stand alone library.
Yaffs provides a bunch of different low-
level filesystem primitives, which any 
OS could hook into.
To work with Linux it also interfaces 
with VFS.



Yaffs in Lisp

➲ Pretty easy to compile as a dynamic library 
& load within SBCL

● Other Linux drivers might need a thin wrapper to 
provide link-time symbols

● On OS X “gcc -bundle ...”
➲ Ideally I want to grow my Lisp image into a 

toolbench for working with Yaffs
● Inspect internal Yaffs state
● Call random functions
● Add new functions/callbacks
● Do all the things I enjoy doing in a pure Lisp en-

vironment



Bindings

➲ Loading a DLL is the really easy bit
➲ Writing bindings to call that code is harder
➲ Doing it by hand is somewhere between  

tedious and hard
● Yaffs has a bookkeeping struct that has about 

220 members
➲ Doing it automatically doesn't always work 

out well
● SWIG is something of a solution

● Often needs to generate C/C++ code that needs to go 
into the original library

● No maintained Lisp generators that I'm aware of

220 members!!!
SWIG is actually pretty good.  But it 
needs to be folded into the make sys-
tem, needs to get #defines right, has to 
parse multiple files, may need to be 
massaged to parse hairy C/C++ con-
structs.  It needs to be linked against 
the original code so is somewhat intrus-
ive.
The main problem with SWIG is that 
C++ is impossible to parse, existing 
compilers just fake it :)



CFFI is Really Nice

➲ typedef struct foo {
int a;
float b;

};
➲ int bar(float a){...}

➲ (defcstruct foo
(a :int)
(b :float))

➲

(defcfun bar :int
(a :float))

CFFI looks pretty much like a “minimal” 
representation of the C code, I don't 
see how you could encode the required 
information in a smaller way.  That 
make CFFI really nice in my book. 



Debuggers Are Your Friends

➲ C/C++ debuggers need to know a lot about 
the program they are debugging

● Function signatures
● Object layout and member names
● How type defines and pointers map to other types
● Sometimes even pre-processor macros

➲ They get this info by parsing special com-
piler generated debugging data

➲ The debug info is fairly easy to parse

I've Googled and can't really find any-
body else using this technique to gen-
erate scripting bindings.  The best I 
found was a usenet posting from 
around 1996 that doesn't appear to 
have lead anywhere.
I'm not at all sure about macros ending 
up in the debug output, but I think I've 
read that somewhere.



The Idea
➲ Write a Lisp program to parse the debug 

data directly from a C/C++ binary that has 
been compiled with debugging turned on

➲ Automatically generate CFFI information 
that will be correct for that binary

● No messing with pre-processor
➲ Usage

1 Obtain binary with debugging info
2 Generate bindings
3 Woohoo

➲ Limitations
● No way to get fully inlined functions
● C++ name mangling still a per-compiler 

issue

For large projects, the build system it-
self can be a nightmare to work with.  
Having to integrate SWIG into that 
could be a lot of work.  Having all the 
required information in one file can 
make life easier.
C++ name mangling is just annoying, 
but I don't think it's very hard to deal 
with.



A C/C++ Debugger written in CL??

➲ Totally pie in the sky right now
➲ But, how cool would that be?
➲ Not that much of a stretch, only need to be 

able to write to memory where the library is 
located to insert break points & then trap 
signals on the Lisp side

➲ Could use dirty tricks to replace the C func-
tions with calls to Lisp functions

➲ Apart from some details, it's probably not 
that hard – certainly nothing “new”

The dirty trick would involve overwriting 
the C code with another jump (branch 
without link) into a Lisp callback.  When 
the Lisp code returns it can jump dir-
ectly back to the original calling func-
tion via the link register.
Also, I'm totally glossing over the real 
difficulty in writing a debugger – it 
would be time consuming.



Parsing Binary Files
➲ In C, you just create a struct of the correct 

layout, and use fread
➲ Common Lisp has no built in support for this 

idiom
➲ BINARY-TYPES is a Cliki library that lets 

you use the C idiom
➲ (define-binary-class mach-header ()

((magic         :binary-type 'u32)  ; should be #xfeedface
 (cpu-type      :binary-type 'u32)
 (cpu-subtype   :binary-type 'u32)
 (file-type     :binary-type 'mach-filetype-constants)
 (ncmds         :binary-type 'u32)
 (sizeof-cmds   :binary-type 'u32)
 (flags         :binary-type 'u32))) 

➲ (with-open-file (stream “foo”)
(read-binary 'mach-header stream)) 

=> CLOS Object of type MACH-HEADER

I'm aware of PCL's chapter on binary 
file reading, but it doesn't come in an 
easy to use package.
Also, I may be missing something ob-
vious & CL may have a better idiom for 
binary file reading.



Mach O files

➲ Consists of
● Header (previous slide)
● Some number of load commands

● (define-binary-class load-command ()
((cmd      :binary-type 'load-command-constants)
 (cmd-size :binary-type 'u32)))

● Some number of sections containing real data
➲ Symbol table command looks like

● (define-binary-class symtab-command () ; LC_SYMTAB
((command-header :binary-type 'load-command)
 (symoff         :binary-type 'u32)
 (nsyms          :binary-type 'u32)
 (stroff         :binary-type 'u32)
 (strsize        :binary-type 'u32)
 (symbols        :accessor symbols-of :initform nil)))

➲ Pretty much the same as ELF files 



Stabs Debugging Format
➲ Simple string format 

“name:symbol-descriptor type-information”
➲ char:t(0,9)=r(0,9);0;127;

typeid 't(0,9)', named char, with range 0..127
➲ :t(0,7)=*(0,9)

typeid 't(0,7)' is a pointer to '(0,9)'
➲ myStruct:T(0,17)=s96a:(0,2),0,32;b:(0,2),32,32;c:(0,

18),64,704;;
's96' -> structure of size 96 bits
'a:(0,2),0,32' -> name is 'a', type is '(0,2)', 0 bits off-
set from struct start, size 32 bits

➲ Way easier than parsing C/C++ 

I've got a fairly complete C parser (it 
can parse the Yaffs binary) in < 500 
SLOC.  I'm re-writing it for clarity and 
size now.
When I'm happy with the C generation 
I'll start working on C++ generation.



C Code/CFFI Output
➲ typedef int foo;

typedef char* string;
struct myStruct
{
    int a;
    int b;
    int c[22];
};

typedef struct
{
    int c;
} my2Struct;

typedef enum
{
    Efoo,
    Ebar
} foobar;

enum {
    foo2
} foobar2;

typedef union
{
    int i;
    char c;
} myunion;

➲ (DEFCTYPE FOO INT)
(DEFCTYPE STRING CHAR*)
(DEFCSTRUCT MYSTRUCT 

(A INT OFFSET 0 COUNT 1) 
(B INT OFFSET 4 COUNT 1)

       (C INT OFFSET 8 COUNT 22))

(DEFCTYPE INT :int32)
(DEFCTYPE CHAR** :pointer)

(DEFCSTRUCT MY2STRUCT 
(C INT OFFSET 0 COUNT 1))

(DEFCENUM FOOBAR 
(EFOO 0)
(EBAR 1))

(DEFCENUM ENUM-2003 
(FOO2 0))

(DEFCTYPE CHAR* :string)
(DEFCTYPE CHAR :char)
(DEFCTYPE FLOAT :float)
(DEFCTYPE DOUBLE :float)
(DEFCTYPE UNSIGNED-CHAR :uint8)

(DEFCUNION MYUNION 
(I INT COUNT 1) 
(C CHAR COUNT 1))



C Code/CFFI Output

➲ int func2(my2Struct 
*sss) {};

➲ int main (int argc, 
char** argv){}

➲ int intfunc(int arg1){}

➲ (DEFCFUN func2 INT 
(SSS MY2STRUCT*))

➲ (DEFCFUN main INT 
(ARGC INT) 
(ARGV CHAR**))

➲ (DEFCFUN intfunc INT
(ARG1 INT))



Oh, that evil thing?
➲ Something I was playing with when Bill con-

tacted me
1 Create a CFFI C function to a name that doesn't 

exist, (defcfun foo :int (a :int))
2 Create a callback function that matches that sig-

nature, (defcallback foo-lisp :int ((a :int)))
3 Hack SBCL's foreign function linkage table to 

point foo at foo-lisp
4 Call (FOO 4)

➲ Execution will do a convoluted jump from 
Lisp code, to a C calling convention, to Lisp 
code and back.

➲ Probably not useful :)



END

●Discussion (hopefully)


