
Doing Evil Things with Common
Lisp

Overview

➲ I use SBCL on a 32bit Intel Mac (OS X)
➲ Loading code that is normally a Linux driver

into a Lisp image
➲ Creating CFFI bindings to foreign code
➲ Writing Lisp code to load binary files using

the binary-types library
➲ Parsing Mach-O (OS X) executable files
➲ Using debug information to generate foreign

bindings automatically

My Background

➲ 7 years of C/C++ experience doing embed-
ded systems work

➲ 1 year of C/C++ in the games industry ob-
sessing over performance and memory us-
age

➲ 2.5 years of Common Lisp with nothing of
note to show for it & I still feel like a novice.
But I'm having fun. Learn a language in 10
years and all that.

Project Background

➲ YAFFS is an Open Source filesystem driver,
designed for NAND flash

➲ Runs under Linux & as a standalone ap-
plication

➲ I know the author and he keeps bugging me
to contribute again

➲ But I want to keep using Lisp, not C

Yaffs Software Stack

Linux

VFS

Yaffs

MTD

NAND

Yaffs Test
Harness

Yaffs

Yaffs
NAND

Emulator

Lisp Image

Yaffs

Test
Harness

NAND
Emulator

Typical Usage Stacks What I want

Yaffs in Lisp

➲ Pretty easy to compile as a dynamic library
& load within SBCL

● Other Linux drivers might need a thin wrapper to
provide link-time symbols

● On OS X “gcc -bundle ...”
➲ Ideally I want to grow my Lisp image into a

toolbench for working with Yaffs
● Inspect internal Yaffs state
● Call random functions
● Add new functions/callbacks
● Do all the things I enjoy doing in a pure Lisp en-

vironment

Bindings

➲ Loading a DLL is the really easy bit
➲ Writing bindings to call that code is harder
➲ Doing it by hand is somewhere between

tedious and hard
● Yaffs has a bookkeeping struct that has about

220 members
➲ Doing it automatically doesn't always work

out well
● SWIG is something of a solution

● Often needs to generate C/C++ code that needs to go
into the original library

● No maintained Lisp generators that I'm aware of

CFFI is Really Nice

➲ typedef struct foo {
int a;
float b;

};
➲ int bar(float a){...}

➲ (defcstruct foo
(a :int)
(b :float))

➲

(defcfun bar :int
(a :float))

Debuggers Are Your Friends

➲ C/C++ debuggers need to know a lot about
the program they are debugging

● Function signatures
● Object layout and member names
● How type defines and pointers map to other types
● Sometimes even pre-processor macros

➲ They get this info by parsing special com-
piler generated debugging data

➲ The debug info is fairly easy to parse

The Idea
➲ Write a Lisp program to parse the debug

data directly from a C/C++ binary that has
been compiled with debugging turned on

➲ Automatically generate CFFI information
that will be correct for that binary

● No messing with pre-processor
➲ Usage

1 Obtain binary with debugging info
2 Generate bindings
3 Woohoo

➲ Limitations
● No way to get fully inlined functions
● C++ name mangling still a per-compiler

issue

A C/C++ Debugger written in CL??

➲ Totally pie in the sky right now
➲ But, how cool would that be?
➲ Not that much of a stretch, only need to be

able to write to memory where the library is
located to insert break points & then trap
signals on the Lisp side

➲ Could use dirty tricks to replace the C func-
tions with calls to Lisp functions

➲ Apart from some details, it's probably not
that hard – certainly nothing “new”

Parsing Binary Files
➲ In C, you just create a struct of the correct

layout, and use fread
➲ Common Lisp has no built in support for this

idiom
➲ BINARY-TYPES is a Cliki library that lets

you use the C idiom
➲ (define-binary-class mach-header ()

((magic :binary-type 'u32) ; should be #xfeedface
 (cpu-type :binary-type 'u32)
 (cpu-subtype :binary-type 'u32)
 (file-type :binary-type 'mach-filetype-constants)
 (ncmds :binary-type 'u32)
 (sizeof-cmds :binary-type 'u32)
 (flags :binary-type 'u32)))

➲ (with-open-file (stream “foo”)
(read-binary 'mach-header stream))

=> CLOS Object of type MACH-HEADER

Mach O files

➲ Consists of
● Header (previous slide)
● Some number of load commands

● (define-binary-class load-command ()
((cmd :binary-type 'load-command-constants)
 (cmd-size :binary-type 'u32)))

● Some number of sections containing real data
➲ Symbol table command looks like

● (define-binary-class symtab-command () ; LC_SYMTAB
((command-header :binary-type 'load-command)
 (symoff :binary-type 'u32)
 (nsyms :binary-type 'u32)
 (stroff :binary-type 'u32)
 (strsize :binary-type 'u32)
 (symbols :accessor symbols-of :initform nil)))

➲ Pretty much the same as ELF files

Stabs Debugging Format
➲ Simple string format

“name:symbol-descriptor type-information”
➲ char:t(0,9)=r(0,9);0;127;

typeid 't(0,9)', named char, with range 0..127
➲ :t(0,7)=*(0,9)

typeid 't(0,7)' is a pointer to '(0,9)'
➲ myStruct:T(0,17)=s96a:(0,2),0,32;b:(0,2),32,32;c:(0,

18),64,704;;
's96' -> structure of size 96 bits
'a:(0,2),0,32' -> name is 'a', type is '(0,2)', 0 bits off-
set from struct start, size 32 bits

➲ Way easier than parsing C/C++

C Code/CFFI Output
➲ typedef int foo;

typedef char* string;
struct myStruct
{
 int a;
 int b;
 int c[22];
};

typedef struct
{
 int c;
} my2Struct;

typedef enum
{
 Efoo,
 Ebar
} foobar;

enum {
 foo2
} foobar2;

typedef union
{
 int i;
 char c;
} myunion;

➲ (DEFCTYPE FOO INT)
(DEFCTYPE STRING CHAR*)
(DEFCSTRUCT MYSTRUCT

(A INT OFFSET 0 COUNT 1)
(B INT OFFSET 4 COUNT 1)

 (C INT OFFSET 8 COUNT 22))

(DEFCTYPE INT :int32)
(DEFCTYPE CHAR** :pointer)

(DEFCSTRUCT MY2STRUCT
(C INT OFFSET 0 COUNT 1))

(DEFCENUM FOOBAR
(EFOO 0)
(EBAR 1))

(DEFCENUM ENUM-2003
(FOO2 0))

(DEFCTYPE CHAR* :string)
(DEFCTYPE CHAR :char)
(DEFCTYPE FLOAT :float)
(DEFCTYPE DOUBLE :float)
(DEFCTYPE UNSIGNED-CHAR :uint8)

(DEFCUNION MYUNION
(I INT COUNT 1)
(C CHAR COUNT 1))

C Code/CFFI Output

➲ int func2(my2Struct
*sss) {};

➲ int main (int argc,
char** argv){}

➲ int intfunc(int arg1){}

➲ (DEFCFUN func2 INT
(SSS MY2STRUCT*))

➲ (DEFCFUN main INT
(ARGC INT)
(ARGV CHAR**))

➲ (DEFCFUN intfunc INT
(ARG1 INT))

Oh, that evil thing?
➲ Something I was playing with when Bill con-

tacted me
1 Create a CFFI C function to a name that doesn't

exist, (defcfun foo :int (a :int))
2 Create a callback function that matches that sig-

nature, (defcallback foo-lisp :int ((a :int)))
3 Hack SBCL's foreign function linkage table to

point foo at foo-lisp
4 Call (FOO 4)

➲ Execution will do a convoluted jump from
Lisp code, to a C calling convention, to Lisp
code and back.

➲ Probably not useful :)

END

●Discussion (hopefully)

Doing Evil Things with Common
Lisp

● Click to add text

A somewhat misleading title really, I
promise that I'll explain it at the end.
This presentation isn't really about a
single piece of software or anything.
Bill managed to convince me to present
something and I was doing some inter-
esting stuff. So this talk is about that
interesting stuff.

Overview

➲ I use SBCL on a 32bit Intel Mac (OS X)
➲ Loading code that is normally a Linux driver

into a Lisp image
➲ Creating CFFI bindings to foreign code
➲ Writing Lisp code to load binary files using

the binary-types library
➲ Parsing Mach-O (OS X) executable files
➲ Using debug information to generate foreign

bindings automatically

My SBCL is a few months old now.
The last point is IMHO the most inter-
esting.

My Background

➲ 7 years of C/C++ experience doing embed-
ded systems work

➲ 1 year of C/C++ in the games industry ob-
sessing over performance and memory us-
age

➲ 2.5 years of Common Lisp with nothing of
note to show for it & I still feel like a novice.
But I'm having fun. Learn a language in 10
years and all that.

The embedded systems work was
mostly WinCE and Linux. I wrote
device drivers, tools, etc.

Project Background

➲ YAFFS is an Open Source filesystem driver,
designed for NAND flash

➲ Runs under Linux & as a standalone ap-
plication

➲ I know the author and he keeps bugging me
to contribute again

➲ But I want to keep using Lisp, not C

NAND flash is the most common non-
volatile solid state storage. It's in
iPods, camera cards, usb drives, etc.
Apple buys more than 50% of all of it.
NAND is different enough from other
systems that a custom file system is
pretty much required.

Yaffs Software Stack

Linux

VFS

Yaffs

MTD

NAND

Yaffs Test
Harness

Yaffs

Yaffs
NAND

Emulator

Lisp Image

Yaffs

Test
Harness

NAND
Emulator

Typical Usage Stacks What I want

Yaffs actually make it pretty easy to
build as a stand alone library.
Yaffs provides a bunch of different low-
level filesystem primitives, which any
OS could hook into.
To work with Linux it also interfaces
with VFS.

Yaffs in Lisp

➲ Pretty easy to compile as a dynamic library
& load within SBCL

● Other Linux drivers might need a thin wrapper to
provide link-time symbols

● On OS X “gcc -bundle ...”
➲ Ideally I want to grow my Lisp image into a

toolbench for working with Yaffs
● Inspect internal Yaffs state
● Call random functions
● Add new functions/callbacks
● Do all the things I enjoy doing in a pure Lisp en-

vironment

Bindings

➲ Loading a DLL is the really easy bit
➲ Writing bindings to call that code is harder
➲ Doing it by hand is somewhere between

tedious and hard
● Yaffs has a bookkeeping struct that has about

220 members
➲ Doing it automatically doesn't always work

out well
● SWIG is something of a solution

● Often needs to generate C/C++ code that needs to go
into the original library

● No maintained Lisp generators that I'm aware of

220 members!!!
SWIG is actually pretty good. But it
needs to be folded into the make sys-
tem, needs to get #defines right, has to
parse multiple files, may need to be
massaged to parse hairy C/C++ con-
structs. It needs to be linked against
the original code so is somewhat intrus-
ive.
The main problem with SWIG is that
C++ is impossible to parse, existing
compilers just fake it :)

CFFI is Really Nice

➲ typedef struct foo {
int a;
float b;

};
➲ int bar(float a){...}

➲ (defcstruct foo
(a :int)
(b :float))

➲

(defcfun bar :int
(a :float))

CFFI looks pretty much like a “minimal”
representation of the C code, I don't
see how you could encode the required
information in a smaller way. That
make CFFI really nice in my book.

Debuggers Are Your Friends

➲ C/C++ debuggers need to know a lot about
the program they are debugging

● Function signatures
● Object layout and member names
● How type defines and pointers map to other types
● Sometimes even pre-processor macros

➲ They get this info by parsing special com-
piler generated debugging data

➲ The debug info is fairly easy to parse

I've Googled and can't really find any-
body else using this technique to gen-
erate scripting bindings. The best I
found was a usenet posting from
around 1996 that doesn't appear to
have lead anywhere.
I'm not at all sure about macros ending
up in the debug output, but I think I've
read that somewhere.

The Idea
➲ Write a Lisp program to parse the debug

data directly from a C/C++ binary that has
been compiled with debugging turned on

➲ Automatically generate CFFI information
that will be correct for that binary

● No messing with pre-processor
➲ Usage

1 Obtain binary with debugging info
2 Generate bindings
3 Woohoo

➲ Limitations
● No way to get fully inlined functions
● C++ name mangling still a per-compiler

issue

For large projects, the build system it-
self can be a nightmare to work with.
Having to integrate SWIG into that
could be a lot of work. Having all the
required information in one file can
make life easier.
C++ name mangling is just annoying,
but I don't think it's very hard to deal
with.

A C/C++ Debugger written in CL??

➲ Totally pie in the sky right now
➲ But, how cool would that be?
➲ Not that much of a stretch, only need to be

able to write to memory where the library is
located to insert break points & then trap
signals on the Lisp side

➲ Could use dirty tricks to replace the C func-
tions with calls to Lisp functions

➲ Apart from some details, it's probably not
that hard – certainly nothing “new”

The dirty trick would involve overwriting
the C code with another jump (branch
without link) into a Lisp callback. When
the Lisp code returns it can jump dir-
ectly back to the original calling func-
tion via the link register.
Also, I'm totally glossing over the real
difficulty in writing a debugger – it
would be time consuming.

Parsing Binary Files
➲ In C, you just create a struct of the correct

layout, and use fread
➲ Common Lisp has no built in support for this

idiom
➲ BINARY-TYPES is a Cliki library that lets

you use the C idiom
➲ (define-binary-class mach-header ()

((magic :binary-type 'u32) ; should be #xfeedface
 (cpu-type :binary-type 'u32)
 (cpu-subtype :binary-type 'u32)
 (file-type :binary-type 'mach-filetype-constants)
 (ncmds :binary-type 'u32)
 (sizeof-cmds :binary-type 'u32)
 (flags :binary-type 'u32)))

➲ (with-open-file (stream “foo”)
(read-binary 'mach-header stream))

=> CLOS Object of type MACH-HEADER

I'm aware of PCL's chapter on binary
file reading, but it doesn't come in an
easy to use package.
Also, I may be missing something ob-
vious & CL may have a better idiom for
binary file reading.

Mach O files

➲ Consists of
● Header (previous slide)
● Some number of load commands

● (define-binary-class load-command ()
((cmd :binary-type 'load-command-constants)
 (cmd-size :binary-type 'u32)))

● Some number of sections containing real data
➲ Symbol table command looks like

● (define-binary-class symtab-command () ; LC_SYMTAB
((command-header :binary-type 'load-command)
 (symoff :binary-type 'u32)
 (nsyms :binary-type 'u32)
 (stroff :binary-type 'u32)
 (strsize :binary-type 'u32)
 (symbols :accessor symbols-of :initform nil)))

➲ Pretty much the same as ELF files

Stabs Debugging Format
➲ Simple string format

“name:symbol-descriptor type-information”
➲ char:t(0,9)=r(0,9);0;127;

typeid 't(0,9)', named char, with range 0..127
➲ :t(0,7)=*(0,9)

typeid 't(0,7)' is a pointer to '(0,9)'
➲ myStruct:T(0,17)=s96a:(0,2),0,32;b:(0,2),32,32;c:(0,

18),64,704;;
's96' -> structure of size 96 bits
'a:(0,2),0,32' -> name is 'a', type is '(0,2)', 0 bits off-
set from struct start, size 32 bits

➲ Way easier than parsing C/C++

I've got a fairly complete C parser (it
can parse the Yaffs binary) in < 500
SLOC. I'm re-writing it for clarity and
size now.
When I'm happy with the C generation
I'll start working on C++ generation.

C Code/CFFI Output
➲ typedef int foo;

typedef char* string;
struct myStruct
{
 int a;
 int b;
 int c[22];
};

typedef struct
{
 int c;
} my2Struct;

typedef enum
{
 Efoo,
 Ebar
} foobar;

enum {
 foo2
} foobar2;

typedef union
{
 int i;
 char c;
} myunion;

➲ (DEFCTYPE FOO INT)
(DEFCTYPE STRING CHAR*)
(DEFCSTRUCT MYSTRUCT

(A INT OFFSET 0 COUNT 1)
(B INT OFFSET 4 COUNT 1)

 (C INT OFFSET 8 COUNT 22))

(DEFCTYPE INT :int32)
(DEFCTYPE CHAR** :pointer)

(DEFCSTRUCT MY2STRUCT
(C INT OFFSET 0 COUNT 1))

(DEFCENUM FOOBAR
(EFOO 0)
(EBAR 1))

(DEFCENUM ENUM-2003
(FOO2 0))

(DEFCTYPE CHAR* :string)
(DEFCTYPE CHAR :char)
(DEFCTYPE FLOAT :float)
(DEFCTYPE DOUBLE :float)
(DEFCTYPE UNSIGNED-CHAR :uint8)

(DEFCUNION MYUNION
(I INT COUNT 1)
(C CHAR COUNT 1))

C Code/CFFI Output

➲ int func2(my2Struct
*sss) {};

➲ int main (int argc,
char** argv){}

➲ int intfunc(int arg1){}

➲ (DEFCFUN func2 INT
(SSS MY2STRUCT*))

➲ (DEFCFUN main INT
(ARGC INT)
(ARGV CHAR**))

➲ (DEFCFUN intfunc INT
(ARG1 INT))

Oh, that evil thing?
➲ Something I was playing with when Bill con-

tacted me
1 Create a CFFI C function to a name that doesn't

exist, (defcfun foo :int (a :int))
2 Create a callback function that matches that sig-

nature, (defcallback foo-lisp :int ((a :int)))
3 Hack SBCL's foreign function linkage table to

point foo at foo-lisp
4 Call (FOO 4)

➲ Execution will do a convoluted jump from
Lisp code, to a C calling convention, to Lisp
code and back.

➲ Probably not useful :)

END

●Discussion (hopefully)

