Doing Evil Things with Common
Lisp

Overview

> | use SBCL on a 32bit Intel Mac (OS X)

> Loading code that is normally a Linux driver
into a Lisp image

> Creating CFFI bindings to foreign code

> Writing Lisp code to load binary files using
the binary-types library

> Parsing Mach-O (OS X) executable files

© Using debug information to generate foreign
bindings automatically

N\-ntﬂ’* W

7

My Background

> 7 years of C/C++ experience doing embed-
ded systems work

2 1 year of C/C++ in the games industry ob-
sessing over performance and memory us-
age

> 2.5 years of Common Lisp with nothing of
note to show for it & | still feel like a novice.
But I'm having fun. Learn a language in 10

years and all that.

N\-ntﬂ’* W

SH>

Project Background

2 YAFFS is an Open Source filesystem driver,
designed for NAND flash

2 Runs under Linux & as a standalone ap-
plication

> | know the author and he keeps bugging me
to contribute again

> But | want to keep using Lisp, not C

N\-ntﬂ’* W

SH>

Yaffs Software Stack

Test
Harness
Y affs NAND
NAND Emulator

Emulator

NAND

Typical Usage Stacks What | want

Yaffs in Lisp

> Pretty easy to compile as a dynamic library

& load within SBCL

® Other Linux drivers might need a thin wrapper to
provide link-time symbols

® On OS X “gcc -bundle ...”

> |ldeally | want to grow my Lisp image into a

toolbench for working with Yaffs

® Inspect internal Yaffs state

e (Call random functions

e Add new functions/callbacks

e Do all the things | enjoy doing in a pure Lisp en-
vironment _—

SH>

Bindings

© Loading a DLL is the really easy bit
= Writing bindings to call that code is harder
> Doing it by hand is somewhere between

tedious and hard
e Yaffs has a bookkeeping struct that has about
220 members

> Doing it automatically doesn't always work

out well

e SWIG is something of a solution
e Often needs to generate C/C++ code that needs to go
into the original library

e No maintained Lisp generators that I'm aware.of

CFFl is Really Nice

> typedef structfoo{ <= (defcstruct foo

int a; (a :int)
float b; (b :float))
}; >
2 int bar(float a){...} (defcfun bar :int
(a :float))

Wk
%

Debuggers Are Your Friends

> C/C++ debuggers need to know a lot about

the program they are debugging

® Function signhatures

® (Object layout and member names

e How type defines and pointers map to other types
e Sometimes even pre-processor macros

> They get this info by parsing special com-
piler generated debugging data
> The debug info is fairly easy to parse

N\-ntﬂ’* W

7

The Idea

> Write a Lisp program to parse the debug
data directly from a C/C++ binary that has
been compiled with debugging turned on
> Automatically generate CFFI information
that will be correct for that binary
e No messing with pre-processor
< Usage
1 Obtain binary with debugging info

2 Generate bindings
3 Woohoo

> Limitations
® No way to get fully inlined functions
® C++ name mangling still a per-compiler -
Issue %

A C/C++ Debugger written in CL??

> Totally pie in the sky right now

> But, how cool would that be?

> Not that much of a stretch, only need to be
able to write to memory where the library is
located to insert break points & then trap
signals on the Lisp side

2 Could use dirty tricks to replace the C func-
tions with calls to Lisp functions

> Apart from some details, it's probably not
that hard - certainly nothing “new”

N\-ntﬂ’* W

7

Parsing Binary Files

> In C, you just create a struct of the correct

layout, and use fread

> Common Lisp has no built in support for this

idiom

> BINARY-TYPES is a Cliki library that lets

you use the C idiom

= (define-binary-class mach-header ()
((magic :binary-type
(cpu-type :binary-type
(cpu-subtype :binary-type
(file-type :binary-type
(ncmds :binary-type
(sizeof-cmds :binary-type
(flags :binary-type

=) (with-open-file (stream “foo”)

'u32) ; should be #xfeedface

'u32)

'u32)

'mach-filetype-constants)

'u32)

'u32)

'u32)))
)

(read-binary 'mach-header stream)

=> CLOS Object of type MACH-HEADER

Mach O files

> Consists of
e Header (previous slide)
e Some number of load commands

° (define-binary-class load-command ()
((cmd :binary-type 'load-command-constants)
(cmd-size :binary-type 'u32)))

e Some number of sections containing real data
> Symbol table command looks like

° (define-binary-class symtab-command () ; LC SYMTAB
((command-header :binary-type 'load-command)
(symoff :binary-type 'u32)
(nsyms :binary-type 'u32)
(stroff :binary-type 'u32)
(strsize :binary-type 'u32)
(symbols :accessor symbols-of :initform nil)))

> Pretty much the same as ELF files

N\-ntﬂ’* W

SH>

Stabs Debugging Format

Simple string format

“name:symbol-descriptor type-information”
char:t(0,9)=r(0,9);0;127;

typeid 't(0,9)', named char, with range 0..127
1(0,7)=%*(0,9)

typeid 't(0,7)" is a pointer to '(0,9)'
myStruct:T(0,17)=s96a:(0,2),0,32:b:(0,2),32,32:c:(0,
18),64,704:;

's96' -> structure of size 96 bits

'a:(0,2),0,32" -> name is 'a’, type is '(0,2)', O bits off-
set from struct start, size 32 bits

Way easier than parsing C/C++

N\-ntﬂ’* W

SH>

C Code/CFFI Output

typedef int foo; 2 (DEFCTYPE FOO INT)

typedef char* string; (DEFCTYPE STRING CHARY)

struct myStruct (DEFCSTRUCT MYSTRUCT

{ (A INT OFFSET O COUNT 1)
int a; (B INT OFFSET 4 COUNT 1)
int b; (C INT OFFSET 8 COUNT 22))
int c[22];

b (DEFCTYPE INT :int32)

(DEFCTYPE CHAR** :pointer)
typedef struct
{ (DEFCSTRUCT MY2STRUCT
int c; (C INT OFFSET O COUNT 1))
} my2Struct;

typedef enum (DEFCENUM FOOBAR
{ (EFOO 0)
Efoo, (EBAR 1))
Ebar (DEFCENUM ENUM-2003
} foobar; (FOO2 0))
enum { DEFCTYPE CHAR* :string)

(

foo?2 (DEFCTYPE CHAR :char)
} foobar?2; (DEFCTYPE FLOAT :float)

(DEFCTYPE DOUBLE :float)
typedef union (DEFCTYPE UNSIGNED-CHAR :uint8)
‘. e
int i; (DEFCUNION MYUNION
char c¢; (I INT COUNT 1)

} myunion; (C CHAR COUNT 1))

C Code/CFFI Output

int func2 (my2Struct
*sss) {};

int main (i1nt argc,
char** argv) {}

int intfunc(int argl) {}

=

=

=

(DEFCFUN funcZ2 INT

(SSS MYZ2STRUCTY*))

(DEFCFUN main INT
(ARGC INT)
(ARGV CHAR**))

(DEFCFUN intfunc INT

(ARG1 INT))

N\-ntﬂ’* W

Oh, that evil thing?

> Something | was playing with when Bill con-

tacted me

1 Create a CFFI C function to a name that doesn't
exist, (defcfun foo :int (a :int))

2 Create a callback function that matches that sig-
nature, (defcallback foo-lisp :int ((a :int)))

3 Hack SBCL's foreign function linkage table to
point foo at foo-lisp

4 Call (FOO 4)

> Execution will do a convoluted jump from
Lisp code, to a C calling convention, to Lisp
code and back. »

> Probably not useful :) %

END

eDiscussion (hopefully)

Doing Evil Things with Common
Lisp

Click to add text

A somewhat misleading title really, |
promise that I'll explain it at the end.
This presentation isn't really about a
single piece of software or anything.
Bill managed to convince me to present
something and | was doing some inter-
esting stuff. So this talk is about that
interesting stuff.

Overview

2 | use SBCL on a 32bit Intel Mac (OS X)
® Loading code that is normally a Linux driver
into a Lisp image

2 Creating CFFI bindings to foreign code

2 Writing Lisp code to load binary files using
the binary-types library

2 Parsing Mach-O (OS X) executable files

2 Using debug information to generate foreign

bindings automatically

\oﬁ?

My SBCL is a few months old now.
The last point is IMHO the most inter-
esting.

My Background

> 7 years of C/C++ experience doing embed-
ded systems work

2 1 year of C/C++ in the games industry ob-
sessing over performance and memory us-
age

2 2.5 years of Common Lisp with nothing of
note to show for it & | still feel like a novice.
But I'm having fun. Learn a language in 10

years and all that.
. {

The embedded systems work was
mostly WinCE and Linux. | wrote
device drivers, tools, efc.

Project Background

2 YAFFS is an Open Source filesystem driver,
designed for NAND flash

2 Runs under Linux & as a standalone ap-
plication

2 | know the author and he keeps bugging me
to contribute again

° But | want to keep using Lisp, not C

Wﬁ?

NAND flash is the most common non-
volatile solid state storage. It's in
iPods, camera cards, usb drives, etc.
Apple buys more than 50% of all of it.
NAND is different enough from other
systems that a custom file system is
pretty much required.

Yaffs Software Stack

Lisp Image
Yaffs Test
REESS

Test
R EIESS

NAND Emulator

NAND Emulator

Typical Usage Stacks What | want

o
@

Y affs actually make it pretty easy to
build as a stand alone library.

Yaffs provides a bunch of different low-
level filesystem primitives, which any
OS could hook into.

To work with Linux it also interfaces
with VFS.

Yaffs in Lisp

2 Pretty easy to compile as a dynamic library
& load within SBCL
e QOther Linux drivers might need a thin wrapper to
provide link-time symbols
e On OS X“gcc -bundle ...”
2 Ideally I want to grow my Lisp image into a
toolbench for working with Yaffs
® [nspect internal Yaffs state
e Call random functions
e Add new functions/callbacks
e Do all the things | enjoy doing in a pure Lisp en-

vironment —

Bindings

2 Loading a DLL is the really easy bit

> Writ

ing bindings to call that code is harder

2 Doing it by hand is somewhere between
tedious and hard
e Yaffs has a bookkeeping struct that has about
220 members
© Doing it automatically doesn't always work
out well

e SWIG is something of a solution
e Often needs to generate C/C++ code that needs to go
into the original library

e No

maintained Lisp generators that I'm aware.of

7

220 members!!!
SWIG is actually pretty good. But it

heeds to
tem, need

ve folded into the make sys-
s to get #defines right, has to

parse mu

tiple files, may need to be

massaged to parse hairy C/C++ con-
structs. It needs to be linked against
the original code so is somewhat intrus-

ve.

The main
C++isim
compilers

problem with SWIG is that
possible to parse, existing
just fake it :)

CFFl is Really Nice

2 typedef struct foo{ < (defcstruct foo
int a; (a :int)
float b; (b :float))
% >
2 int bar(float a){...} (defcfun bar :int
(a :float))

Wﬁ?

CFFI looks pretty much like a “minimal”
representation of the C code, | don't
see how you could encode the required
information in a smaller way. That
make CFFI really nice in my book.

Debuggers Are Your Friends

2 C/C++ debuggers need to know a lot about

the program they are debugging
® Function signatures
e Object layout and member names
e How type defines and pointers map to other types
e Sometimes even pre-processor macros

2 They get this info by parsing special com-
piler generated debugging data

° The debug info is fairly easy to parse

m

I've Googled and can't really find any-
body else using this technique to gen-
erate scripting bindings. The best |
found was a usenet posting from
around 1996 that doesn't appear to
have lead anywhere.

I'm not at all sure about macros ending
up in the debug output, but | think I've
read that somewhere.

The Idea

> Write a Lisp program to parse the debug
data directly from a C/C++ binary that has
been compiled with debugging turned on
> Automatically generate CFFI information
that will be correct for that binary
® No messing with pre-processor
> Usage
1 Obtain binary with debugging info
2 Generate bindings
3 Woohoo
> Limitations
® No way to get fully inlined functions
® C++ name mangling still a per-compiler

issue ‘wﬁr

For large projects, the build system it-
self can be a nightmare to work with.
Having to integrate SWIG into that
could be a lot of work. Having all the
required information in one file can
make life easier.

C++ name mangling is just annoying,
but | don't think it's very hard to deal
with.

A C/C++ Debugger written in CL??

2 Totally pie in the sky right now

> But, how cool would that be?

2 Not that much of a stretch, only need to be
able to write to memory where the library is
located to insert break points & then trap
signals on the Lisp side

2 Could use dirty tricks to replace the C func-
tions with calls to Lisp functions

2 Apart from some details, it's probably not
that hard - certainly nothing “new”

m

The dirty trick would involve overwriting
the C code with another jump (branch
without link) into a Lisp callback. When
the Lisp code returns it can jump dir-
ectly back to the original calling func-
tion via the link register.

Also, I'm totally glossing over the real
difficulty in writing a debugger - it
would be time consuming.

Parsing Binary Files

2 In C, you just create a struct of the correct
layout, and use fread

2 Common Lisp has no built in support for this
idiom

2 BINARY-TYPES is a Cliki library that lets

you use the C idiom

fine-bi ()

I'm aware of PCL's chapter on binary
file reading, but it doesn't come in an
easy to use package.

Also, | may be missing something ob-
vious & CL may have a better idiom for

binary file reading.

Mach O files

> Consists of
e Header (previous slide)
e Some number of load commands

° (define-binary-class load-command ()
load-command-constants)
(cmd-size :binary-ty u32)))

e Some number of sections containing real data
© Symbol table command looks like

° (define-binary-class symtab-command () ;
command-header :binary-type g
:binary-type
:binary-type

s-of :initform nil)))

Stabs Debugging Format

Simple string format

“name:symbol-descriptor type-information”
char:t(0,9)=r(0,9);0;127;

typeid 't(0,9)', named char, with range 0..127
:t(0,7)=*(0,9)

typeid 't(0,7)" is a pointer to '(0,9)’'
myStruct:T(0,17)=s96a:(0,2),0,32;b:(0,2),32,32;c:(0,
18),64,704;;

's96' -> structure of size 96 bits

'a:(0,2),0,32' -> name is 'a’, type is '(0,2)', O bits off-
set from struct start, size 32 bits

Way easier than parsing C/C++

Wﬁ?

I've got a fairly complete C parser (it
can parse the Yaffs binary) in < 500
SLOC. I'm re-writing it for clarity and
Size now.

When I'm happy with the C generation
I'll start working on C++ generation.

C Code/CFFI Output

INT
3 INT

(DEFCTYPE
(DEFCTYPE (

(DEFCSTRUCT MY2

:uint8)

C Code/CFFI Output

int func2 (my2Struct
*sss) {};

int main (int argc,
char** argv) {}

int intfunc(int argl) {}

2 (DEFCFUN func2 INT
(SSS MY2STRUCT*))

© (DEFCFUN main INT
(ARGC INT)
(ARGV CHAR*¥*))

© (DEFCFUN intfunc INT
(ARGl INT))

Oh, that evil thing?

2 Something | was playing with when Bill con-
tacted me
Create a CFFI C function to a name that doesn't
exist, (defcfun foo :int (a :int))
Create a callback function that matches that sig-
nature, (defcallback foo-lisp :int ((a :int)))

Hack SBCL's foreign function linkage table to
point foo at foo-lisp
Call (FOO 4)

> Execution will do a convoluted jump from
Lisp code, to a C calling convention, to Lisp
code and back.

> Probably not useful ;) %

eDiscussion (hopefully)

